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Abstract
Selecting an appropriate set of confounders for which to control is critical for reliable causal inference. Recent theoretical 
and methodological developments have helped clarify a number of principles of confounder selection. When complete 
knowledge of a causal diagram relating all covariates to each other is available, graphical rules can be used to make deci-
sions about covariate control. Unfortunately, such complete knowledge is often unavailable. This paper puts forward a prac-
tical approach to confounder selection decisions when the somewhat less stringent assumption is made that knowledge is 
available for each covariate whether it is a cause of the exposure, and whether it is a cause of the outcome. Based on recent 
theoretically justified developments in the causal inference literature, the following proposal is made for covariate control 
decisions: control for each covariate that is a cause of the exposure, or of the outcome, or of both; exclude from this set any 
variable known to be an instrumental variable; and include as a covariate any proxy for an unmeasured variable that is a 
common cause of both the exposure and the outcome. Various principles of confounder selection are then further related to 
statistical covariate selection methods.
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Introduction

Confounding is a concern in almost all observational stud-
ies in epidemiology that focus on causality. Epidemiologic 
analyses are often criticized on the grounds that some third 
factor might be responsible for the relationship between the 
exposure and the outcome under study i.e., that the groups 
receiving and not receiving the exposure are different from 
one another in some other important variable that is also 
related to the outcome. As a result, considerable effort is 
often devoted during study design to consider what such 
confounding variables might be and to collect data on them. 
In the analysis of data, effort is made to control or adjust for 
such confounding variables. The hope is that by such efforts 
at data collection and analytic control, the groups with and 
without the exposure are in fact comparable within strata of 
such covariates. A critical question that arises in this context 

is how to go about deciding which covariates to select for 
control for confounding.

A formal system based on causal diagrams was put for-
ward by Pearl [1, 2], which, if adequate knowledge with 
regard to the relevant underlying causal relationships is 
available, would suffice to make decisions with regard to 
confounding control [3, 4]. Unfortunately, in settings with 
numerous covariates, knowledge of a complete causal dia-
gram, including the causal relationships amongst all the pos-
sible covariates themselves is often unavailable. Principles 
that are sometimes put forward for making these decisions 
when knowledge of a causal diagram is unavailable include, 
for example, (i) control for all pre-exposure measured vari-
ables or (ii) control for all common causes of the exposure 
and the outcome. While these principles are often helpful, 
it has been noted that in certain settings they can lead to 
controlling for a covariate that in fact introduces bias [4–9] 
or to not controlling for a covariate that would eliminate 
bias [9]. Decisions about confounding control are some-
times alternatively made solely on statistical grounds, for 
example, by examining whether controlling for a covari-
ate changes an estimate by more than 10%, or by forward 
and backward selection, or by more contemporary machine 
learning methods. However, statistical analyses alone are 
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not adequate for making decisions about confounder selec-
tion insofar as statistics alone generally cannot make deter-
minations about temporal order. Statistical analyses cannot 
in general distinguish between confounders, which ought 
to be controlled for in the estimation of the total effect, 
versus mediators, which ought not be controlled for in the 
estimation of the total effect [10]. Some substantive knowl-
edge is needed. Thus even for statistical variable selection 
techniques, the researcher must still make decisions as to 
what variables might at least potentially be considered a 
confounder (and e.g., not a mediator) before employing the 
statistical approaches.

This paper will put forward a synthesis of various rela-
tively recent developments in causal inference surrounding 
the topic of confounder selection [1–18]. A criterion for 
determining what set of covariates to control for as con-
founders will be proposed, and various common statistical 
variable selection approaches will be discussed with regard 
to their adequacy in appropriately making confounding con-
trol decisions. The proposal in this paper is not intended 
to be definitive, but rather as (i) a way to attempt to make 
sense of the various developments concerning bias and con-
founding in causal inference, (ii) as a potentially practical 
and usable approach to confounder selection decisions, and 
(iii) as a starting point to generate further discussion, and 
potentially future refinements. We will first introduce some 
basic notation, then consider principles of confounder selec-
tion, and finally relate these to statistical covariate selection 
methods.

Notation and definitions

Consider an exposure A and outcome Y, and measured 
covariates C. Let Ya denote the counterfactual outcome or 
potential outcome that would have been observed for an indi-
vidual if the exposure A had, possibly contrary to fact, been 
set to level a. We say that the covariates C suffice to control 
for confounding if the counterfactuals Ya are independent of 
A conditional on C, which we denote by notation Ya ⊥ A |C. 
The definition essentially states that within strata of C, the 
group that actually had exposure status A = a is representa-
tive of what would have occurred had the entire population 
with C = c been given exposure A = a. If this holds, we could 
use the observed data to reason about the effect of interven-
ing to set A = a for the entire population.

This condition of no confounding for the effect of A on Y 
conditional on C is sometimes, in other literatures, referred 
to using different terminology. It is sometimes in epidemi-
ology also referred to as “exchangeability” [19] or as “no 
unmeasured confounding” [20]; in the statistics literature it 
is sometimes referred to as “weak ignorability” or “ignor-
able treatment assignment” [21]; in the social sciences it 

is sometimes referred to as “selection on observables” [22, 
23], or as “exogeneity” [23]. When this assumption holds 
and when we also have the technical consistency assump-
tion that for those with A = a, we have that Ya = Y, then we 
can estimate causal effects [2, 24], defined as a contrast of 
counterfactual outcomes, using the observed data and asso-
ciations. Specifically we then have that:

The left hand side of the equation is the causal effect of 
the exposure on the outcome conditional on the covariates 
C = c. The right hand side of the equation consists of the 
observed associations between the exposure and the out-
come in the actual observed data. If the effect of A on Y is 
unconfounded conditional on the measured covariates C, as 
in Fig. 1, we can estimate causal effects from the observed 
data. The expression above is for causal effects on a differ-
ence scale, but if the effect of the exposure on the outcome 
is unconfounded conditional on covariates then one can like-
wise estimate the causal effect on the ratio scale from the 
observed data:

 
We now turn to principles of confounder selection.

Principles of confounder selection

The assumption of the absence of confounding is a strong 
one. With observational data we can never be certain that it 
holds. We attempt to control for covariates that are related 
to both the exposure and the outcome in order to make the 
assumption plausible. Causal diagrams can sometimes 
be helpful in this regard if something is known about the 
causal structure relating all of the variables to each other 
[2]. However, we must often make these decisions without 
having much knowledge of the underlying causal structures 
and without knowing for certain whether adjustment for a 
particular covariate will reduce bias. Different principles 
for deciding what covariates to adjust for to try to control 
for confounding may require different levels of knowledge 
regarding the nature of the covariates. If we truly had full 

E
[
Y1 − Y0|c]= E[Y|A = 1, c

]
− E[Y|A = 0, c]

P
(
Y1 = 1|c

)
∕P

(
Y0 = 1|c

)
= P(Y = 1|A = 1, c)∕P(Y = 1|A = 0, c)

C A Y

Fig. 1   Confounding by covariates C of the relationship between 
exposure A and outcome Y
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knowledge of the structure of a causal diagram that related 
all of the covariates to each other and to the exposure and 
outcome then we could make use of the so-called “backdoor 
path criterion” of Pearl [1, 2] to determine which covariates 
would be sufficient to control for confounding bias. Without 
such detailed structural information about all of the differ-
ent possible covariates, other approaches must then be used.

One principle of covariate selection for confounding 
control that is sometimes used is what might be referred 
to as the “pretreatment criterion” [25, 26]. In this approach 
one attempts to control for any variable that is prior to the 
treatment or exposure under study. Restriction is made to 
covariates that precede the exposure because otherwise such 
a covariate might be on the pathway from exposure to out-
come and controlling for it might block some of the effect 
[10, 27].1 Any common cause of both the exposure and the 
outcome must be prior to the exposure and thus such restric-
tion to pre-exposure covariates seems reasonable. Because 
we often do not know whether a particular covariate in fact 
affects both the exposure and the outcome, it may then seem 
best, whenever possible, to adjust for all available covariates 
that are prior to the exposure and indeed this approach has 
been advocated [25, 26] and is used with some frequency.

But is this “pre-treatment” approach to confounder selec-
tion the best? One problem that arises with the “pre-treat-
ment” approach is that in principle one may end up control-
ling for a pre-exposure covariate that in fact introduces bias 

[2, 5–9]. In the causal diagram in Fig. 2, for example, an 
analysis of the association between A and Y without control-
ling for any covariates would give valid estimates of causal 
effects, but in an analysis adjusted for L, there would be 
bias because of the unblocked backdoor path A–U1–L–U2–Y 
that was unblocked by conditioning on the variable L [2, 7, 
8]. In the causal diagram literature, the variable L that is a 
common effect of two variables on the path A–U1–L–U2–Y 
is sometimes referred to as “collider” and the bias induced 
by conditioning on the collider is sometimes referred to as 
“collider bias” or “M-bias” [2, 5–9]. In this setting, the “pre-
treatment” confounder selection approach fails. Its use in 
fact introduces bias [2, 7].

An alternative approach to confounder selection which 
requires relatively minimal knowledge of the underlying 
causal structure and is perhaps used with some frequency in 
practice in epidemiology is what one might call a “common 
cause” approach: one adjusts for all pre-exposure covari-
ates that are common causes of exposure and outcome [28]. 
The application of this criterion requires somewhat more 
knowledge than the application of the “pre-treatment” cri-
terion because one must have knowledge for each covariate 
whether it is a cause of the exposure and of the outcome, 
but still this required knowledge is considerably less than 
that required to employ the back-door path criterion which 
requires complete knowledge of the causal relations between 
each covariate and every other covariate. The common cause 
criterion has the advantage that if one is genuinely able to 
control for all common causes of the exposure and the out-
come, then regardless of what the underlying causal diagram 
might be, control for this set of common causes will suffice 
to control for confounding for the effect of the exposure on 
the outcome [2]. The downside of the common cause cri-
terion is that in certain instances, if data on some of the 
covariates that are common causes of the exposure and the 
outcome are not available, there might be a different set of 
covariates that suffices to control for confounding, but that 
is not captured by the common cause criterion. Consider, for 
example, the causal diagram in Fig. 3 and suppose that data 
on U is not available but that data on C is available. If the 
only covariate available were C, then, since C is not a com-
mon cause of A and Y, the common cause criterion would 

U1

U2

L A Y

Fig. 2   Controlling for pre-exposure covariate L introduces bias in the 
relationship between exposure A and outcome Y because L is a col-
lider on the path from A to Y, since it is a common effect of U1 and 
U2

C A YU

Fig. 3   Controlling for measured covariate C, even in the presence of 
unmeasured variable U, eliminates confounding of the relationship 
between exposure A and outcome Y, even though C itself is not a 
common cause of A and Y

1  In principle one could control for covariates temporally subsequent 
to the exposure but not affected by the exposure [2], or even variables 
affected by the exposure but not related to the outcome [4] but since 
it is difficult to know for sure whether a covariate that is temporally 
subsequent to the exposure is affected by it, often the restriction is 
made to covariates prior to the treatment or exposure under study. It 
is possible that the variable occurs prior to the exposure but is meas-
ured retrospectively subsequent to the exposure, and such variables 
might also be considered, though concerns about measurement error 
of such variables might then also be introduced.
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suggest not to control for it. However, if one did control for 
C, even though it is not a common cause of A and Y, this 
would suffice to control for confounding. So whereas the 
“pre-exposure” criterion was too liberal and could result in 
control for covariates that create bias, the “common cause” 
criterion is too conservative and may result in not controlling 
for covariates that in fact would suffice to eliminate bias.

An alternative approach that in some ways strikes an 
intermediate balance between these two alternatives is to 
control for any pre-exposure covariate that is a cause of the 
exposure, or the outcome, or both. We will refer to this cri-
terion as the “disjunctive cause criterion” [9] because one 
controls for covariates that are causes of the exposure or the 
outcome (or are causes of both). Like the common cause 
criterion, this disjunctive cause criterion requires knowledge 
of whether each covariate is a cause of the exposure and 
whether it is a cause of the outcome, but it does not require 
knowledge of the full underlying causal diagram relating 
each of the covariates to all of the other covariates. The 
disjunctive cause criterion also has some attractive prop-
erties with regard to confounding control. The application 
of this criterion to Fig. 2 would result in not controlling 
for L since L is not a cause of A or Y; the application of 
the criterion would thus avoid bias generated by controlling 
for L in Fig. 2. Moreover, in Fig. 3 in a situation where U 
is unavailable, the disjunctive cause criterion would result 
in controlling for covariate C since C is a cause of Y; and 
the control for covariate C would then suffice to control for 
confounding and avoid the bias arising from the common 
cause criterion that results from not controlling for C. In 
fact, it can be shown, that for every causal diagram, if there 
is any subset of the measured covariates that suffices to con-
trol for confounding, then the set selected by the disjunctive 
cause criterion will suffice as well [9]. This property does 

not hold for the “pre-treatment” as illustrated by Fig. 2 and 
does not hold for the “common cause” criterion as illustrated 
in Fig. 3.2

A reasoned approach to confounding control, if knowl-
edge is available on whether each covariate is a cause of the 
exposure and whether each covariate is a cause of the out-
come, might then be to apply the disjunctive cause criterion 
and select those covariates that are causes of the exposure, 
or the outcome, or both. In light of the theoretical properties 
of this criterion it may be a sensible approach, but its use in 
practice would benefit from two further qualifications. First, 
it has been documented elsewhere that if there is some resid-
ual confounding due to an unmeasured covariate U, then 
controlling for a variable that is a cause of the exposure, but 
has no relation to the outcome except through the exposure, 
can in fact amplify the bias due to U [11–16]. For example, 
in Fig. 4, if U is unmeasured it will generate bias. How-
ever, in many cases, the bias will in fact be worse if adjust-
ment is made for Z, than if adjustment is not made for Z 
[11–16]. Such a variable that is a cause of the exposure, but 
has no relation to the outcome except through the exposure 
is sometimes in other contexts called an “instrument” or an 
“instrumental variable” [29–31] and the additional bias that 
can result by controlling for an instrument in the presence 
of unmeasured confounding is sometimes called “Z-bias” 
[12, 16]. Instrumental variables can sometimes be useful in 
obtaining estimates of the causal effect through instrumental 
variable analysis [29–31], but controlling for instruments in 
a regression of the outcome on the exposure has the potential 
to generate additional bias. In general, it would thus be best 
in practice, if the disjunctive cause criterion is to be used, to 
discard any variable known to be an instrumental variable 
from covariate control. In general, the level of knowledge 
that is required to determine that a variable is an instrumen-
tal variable is considerable, as it must be known that it is 
a cause of the exposure but that it is otherwise completely 
unrelated to the outcome except through the exposure. It 
must be known then that the purported instrumental vari-
able is not a direct cause of the outcome and that it is not 
related to the outcome through some other variable except 
through the exposure. Such substantive knowledge will often 
not be available, and when instruments are employed in 
instrumental variable analysis their use is often considered 

Z A Y

U

Fig. 4   In the presence of uncontrolled confounding between exposure 
A and outcome Y induced by unmeasured variable U, controlling for 
the instrument Z can amplify the bias induced by U

2  Another criterion that might be put forward that we could refer 
to as an “extended common cause criterion” would be to control 
for any variable that is either a common cause of the exposure and 
outcome, or that was on the pathway from such a common cause to 
the exposure or outcome. This criterion, like the disjunctive cause 
criterion, would select a sufficient set of confounders in both Figs. 2 
and 3. The downside of this “extended common cause criterion” is 
that it requires far more knowledge of the underlying diagram. The 
“disjunctive cause criterion” and the “common cause criterion” only 
required knowledge of whether each variable is a cause of the expo-
sure or of the outcome or of both. The “extended common cause cri-
terion” requires also knowledge of whether each variable is such that 
there is another variable that is a common cause of the exposure and 
the outcome and for which the variable in question is on the path-
way from the common cause to either the exposure or the outcome. 
In other words, the “extended common cause criterion” requires 
considerable knowledge of the relationships that potential covariates 
have to each other. It is difficult to conceive of contexts in which this 
information would be available without also having knowledge of the entire causal diagram; and with knowledge of the entire causal dia-

gram, Pearl’s original backdoor path criterion would suffice.

Footnote 2 (continued)
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controversial. Thus, while it would be good to discard from 
covariate selection any covariate known to be an instrument, 
these settings might, in practice, be rare.

A second qualification to the disjunctive cause criterion 
when used in practice is it might be desirable to adjust for 
any variable that does not satisfy the disjunctive cause cri-
terion but that may be a proxy for a variable that does sat-
isfy the criterion such as variable C1 in Fig. 5. A proxy for 
a variable that does satisfy the disjunctive cause may be 
essentially viewed as a confounder that is subject to meas-
urement error, and in most cases adjustment for such vari-
able will reduce the bias due to confounding [17, 18, 32, 
33]. However, adjusting for a proxy of a confounder is not 
always guaranteed to reduce bias [18, 32, 33] and so care 
must be still taken and conclusions about effects are sub-
ject to somewhat more uncertainty. Methods for sensitivity 
analysis for unmeasured confounding can help assess how 
much residual confounding might be needed to explain away 
an effect estimate [34–39]. Cautions about controlling for 
“proxy confounders” are perhaps especially relevant in con-
texts in which the putative proxy confounder is in fact not a 
proxy for a common cause of the exposure and outcome, but 
rather a proxy for a cause of just the exposure, or of just the 
outcome, since if in fact it is a proxy in both of these senses 
then we are back to the confounding structure in Fig. 2 that 
can introduce collider bias. It thus may be best to restrict 
control for proxy confounders to those that are proxies for 
variables known to be a common cause of the exposure and 
the outcome.

Adding these two qualifications leads us to a summary 
principle for confounder selection of: control for each covar-
iate that is a cause of the exposure, or of the outcome, or 
of both; exclude from this set any variable known to be an 
instrumental variable; and include as a covariate any proxy 
for an unmeasured variable that is a common cause of both 
the exposure and the outcome.

Principles of confounder selection 
and confounder timing

Another consideration that should be taken into account 
when making decisions about confounder selection based 
on substantive knowledge is that of covariate timing. It was 
noted above that for estimation of total effects, rather than 
direct effects, we do not want to make adjustment for vari-
ables that may be on the pathway from the exposure to the 
outcome [2, 10, 27]. To avoid this, we often refrain from 
adjusting for covariates that occur temporally subsequent 
to the exposure. In many two-wave longitudinal studies, the 
exposure and covariates are all assessed at one time and the 
outcome is assessed at a subsequent time. However, in many 
cohort studies, data is collected on all exposures, covari-
ates, and outcomes repeatedly across each wave, perhaps 
once per year, or once every 2 years. Such designs can allow 
researchers to examine the effects of time-varying exposures 
[40, 41], but even when assessing the effects of an exposure 
at a single point in time, such designs can help make more 
informed confounder selection decisions based on the tem-
poral ordering of the data. One difficulty with studies in 
which the exposure and potential confounding covariates 
are all assessed at the same time is that it can be difficult to 
determine whether a covariate assessed at the same time as 
the exposure may in fact be affected by it.

Consider, for example, a study intended to assess the 
effect of physical activity on cardiovascular disease. Body 
mass index (BMI) might be available as a covariate and it 
may be thought important to then control for BMI as a con-
founder. However, it is of course also conceivable that BMI 
is on the pathway from physical activity to cardiovascular 
disease and that control for it may block some of the effect 
of physical activity. Conversely, it may also be the case that 
BMI itself affects both subsequent physical activity and 
subsequent incidence of cardiovascular disease. Someone 
with a very high BMI may have more difficulty regularly 
exercising. Thus it is possible that BMI is both a confounder 
(for the effect of subsequent physical activity) and also a 
mediator on the pathway from prior physical activity to car-
diovascular disease. It is thus difficult to know whether or 
not to adjust for BMI if both BMI and physical activity are 
measured at the same time. We cannot adequately distin-
guish in this setting between confounding and mediation 
[10]. If, however, BMI is available repeatedly over time then 
it may be possible to control for BMI in the wave of data 
that is prior to the wave that uses exercise as the primary 
exposure. This would better rule out the possibility that the 
BMI variable used in the analysis is a mediator; if its meas-
urement precedes that of physical activity by a year then 
it is more reasonable to interpret it as a confounder. When 
multiple waves of data are available it may thus be desirable 

U A Y

C1

Fig. 5   Control for a proxy confounder C1 of the true unmeasured con-
founder U will often, but not always, reduce confounding bias in the 
relationship between exposure A and outcome Y
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to control for the covariates in the wave prior to the primary 
exposure of interest. It may also be desirable to control for 
prior levels of the exposure in the previous wave to further 
rule out confounding. This is not always an option when 
only two waves of data are available (one for the exposure 
and covariates and one for the outcome), but when multiple 
waves of data are available it can be possible to make deci-
sions about covariate timing that allow one to control for 
confounders while better ruling out the possibility that one 
might in fact be controlling for a mediator. These considera-
tions are certainly relevant in the context of the estimation 
of the causal effects of time-varying exposures but they are 
relevant even in the context of considering the effects of 
an exposure at a single point in time. It is also of course 
possible to carry out sensitivity analysis of the timing of 
confounder measurement, and to compare the results when 
confounders are controlled for contemporaneously with the 
exposures versus when they are controlled for in the prior 
wave [42–46].

Statistical confounder selection

The approach described above for covariate selection can 
be useful when sufficient knowledge is available as to 
whether each covariate may be a cause of the exposure and/
or the outcome. The approach described above essentially 
involves making decisions about confounder control based 
on substantive knowledge. Various data-driven statistical 
approaches to confounder selection have also been proposed. 
As will be discussed below, data-driven approaches do not 
obviate the need for substantive knowledge in confounder 
selection decisions, even though they are sometimes pre-
sented as stand-alone alternatives. Statistical data-driven 
approaches are sometimes motivated by the fact that there 
is far more covariate data that is available than is possible to 
adjust for in a standard regression model, especially when 
the number of covariates is relatively large and the sample 
size is relatively modest. Convergence properties of statisti-
cal models can then sometimes have very poor performance. 
A statistical covariate selection technique might then be use-
ful in reducing the number of covariates to achieve a more 
parsimonious model. Traditionally, this was perhaps the 
primary motivation for statistical approaches to covariate 
selection. Alternatively, however, even when sample sizes 
are very large, if the number of covariates is also large it 
may be difficult to even go through each of the covariates 
one by one to assess whether they are causes of the expo-
sure and/or outcome and this might also motivate a more 
statistically oriented approach to covariate selection. And, 
of course, both problems may be present: it may be impracti-
cal to substantively go through the covariates one-by-one to 
assess each and it may also be the case that the number of 

covariates may be large relative to, or even larger in absolute 
number than, the total sample size.

Historically, perhaps the most common statistical covari-
ate selection techniques were forward and backward selec-
tion. In backward selection, one starts with the complete 
set of covariates and then iteratively discards each covariate 
unassociated with the outcome conditional on the exposure 
and the other covariates. It can be shown that if the total set 
of covariates suffice to control for confounding for the effect 
of the exposure on the outcome, and if backward selection 
at each stage does correctly select and discard covariates 
unassociated with the outcome conditional on exposure 
and all remaining covariates at that stage, then the final set 
of covariates selected will also suffice to control for con-
founding [9, 41]. In forward selection, one begins with an 
empty set of covariates and then examines associations of 
each covariate with the outcome conditional on the exposure 
adding the first covariate that is associated with the outcome, 
conditional on exposure; then at each stage one examines 
associations of each covariate with the outcome conditional 
on the exposure and the covariates already selected, add-
ing the first additional covariate that is thus associated; the 
process continues until, with the set of covariates selected, 
all remaining covariates are independent of the outcome, 
conditional on the exposure and the covariates that had been 
selected. Again, provided the total set of covariates suffices 
to control for confounding for the effect of the exposure on 
the outcome, and that the forward selection at each stage 
does correctly identify the covariates that are and are not 
associated with the outcome conditional on exposure and 
all previously selected covariates at that stage, then under 
some further technical assumptions (that the distribution of 
the exposure, outcome, and covariates is “faithful” to the 
underlying causal diagram [2]), one can conclude that the 
final set of covariates selected will also suffice to control for 
confounding [9].

While the backward selection and forward selection pro-
cedures are intuitively appealing, they do suffer from a num-
ber of drawbacks when used in practice. First, when mak-
ing the determination about whether a covariate is or is not 
associated with the outcome at each stage, statistical testing 
using p-values is often used in practice and such statistical 
testing of course in no way ensures that the correct conclu-
sion is reached [47]. The confounding control properties 
above only hold if, at each stage the right decision is made. 
Second, once the final set of covariates is selected using 
either forward or backward selection, the most common 
approach is then to fit a final regression model with that set 
of covariates to obtain estimates and confidence intervals. 
Unfortunately, if the data have already been used to carry 
out covariate selection, the estimates and confidence inter-
vals that are obtained following such selection are no longer 
valid [48]. The standard approaches to statistical inference, 
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when used “post-selection”, break down. Recent work has 
examined approaches to carry out statistical inference after 
a data-based covariate selection procedure has been used, 
but these are no longer as straightforward as simply fitting a 
final regression model [49–51].

Alternatively, one might consider doing the covariate 
selection with half of the data and fitting the final model 
with the other half of the data but this results in considerable 
loss in the precision of the estimates, and standard errors 
are much larger, and confidence interval much wider, than 
they would otherwise be. A final disadvantage of backward 
selection when used in practice is that it requires that the 
sample size is sufficiently large to fit the initial model with 
all covariates included. If one is carrying out covariate selec-
tion because the initial set of covariates is very large, then 
it may not be possible to even begin with such backward 
selection approaches. Alternatively, if the sample size is 
sufficiently large that one can fit the initial model with all 
of the covariates then it might be sufficient to simply use 
that model to obtain estimates of the causal effect of the 
exposure on the outcome. Statistical covariate selection is 
then not even necessary. Because of these various reasons, 
these traditional approaches to covariate selection may be of 
somewhat limited value. With many covariates and a smaller 
dataset, forward selection might be used to try to determine a 
much smaller set of covariates for which to adjust in the final 
model, but, because of the post-selection statistical inference 
issues noted above, such analyses are perhaps best viewed as 
exploratory or hypothesis-generating, rather than as provid-
ing a reliable estimate of the causal effect.

A statistical approach to covariate selection closely 
related to forward and backward selection is what is some-
times called the “change-in-estimate” approach. In this 
approach covariate selection decisions are made based upon 
whether inclusion of a covariate changes the estimate of the 
causal effect for the exposure by more than some thresh-
old, often 10% [48]. In some ways this is similar to the for-
ward and backward selection approaches described above 
in examining empirical associations but uses the magnitude 
of the effect estimates (in particular the magnitude of the 
change in the exposure effect estimate) rather than the pres-
ence or absence of association, or threshold for a p value, 
in making covariate selection decisions. Like the forward 
and backward selection approaches based on associations 
or p-values, the change in estimate approach still requires 
that the initial total set of covariates suffice to control for 
confounding. If used independently one covariate at a time, 
without consideration of whether the set of covariates suf-
fices to control for confounding, one may be led to control 
for a covariate that in fact generates bias, such as L in Fig. 2. 
Also, like the forward and backward selection approaches 
based on associations or p-values, validity of covariate selec-
tion with change in estimates requires that the decisions 

made about these association are correct, and that sampling 
variability does not lead to an incorrect decision about asso-
ciation. For example, one may end up with a change in the 
exposure coefficient with and without a covariate of more 
than 10%, not because the covariate is a confounder, but 
simply due to chance variation.

However, the change-in-estimate approach has one fur-
ther disadvantage that the forward and backward selection 
procedures do not share: the change in estimate approach is 
relative to the effect measure and it is inappropriate for non-
collapsible measures such as the odds ratio or hazard ratio if 
the outcome is common [52]. For non-collapsible measures 
such as the odds ratio or hazard ratio with a common out-
come, marginal and conditional estimates are not directly 
comparable. Even in a randomized trial, one can have a true 
change in an odds ratio after controlling for a covariate, not 
because of confounding, but because of non-collapsibility 
[52]. Conversely, an odds ratio estimate may not change even 
after adjustment for a true confounder because for example, 
a downward change in the odds ratio effect measure induced 
by confounding may be balanced by an upward change in 
the measure due to non-collapsibility. Thus even beyond 
all of the caveats above concerning forward and backward 
selection, covariate selection based on change-in-estimate 
approaches is further problematic when non-collapsible 
effect measures are used.

An alternative approach to statistical covariate selection 
that has become popular is to use a procedure related to 
what is now sometimes called a “high-dimensional pro-
pensity score” [53, 54]. In this approach, one covariate at 
a time, one calculates the risk ratio between that covariate 
and the outcome, and for a binary covariate, one also exam-
ines the prevalence of the covariate comparing the exposed 
and unexposed. Using these quantities an approximate 
estimate of the bias that such a covariate might generate is 
obtained [53, 54] and covariates are prioritized in order of 
this approximate bias. Some portion of the covariates (e.g., 
10%) are then chosen based on this ordering of the approx-
imate bias. These might then also be supplemented with 
certain demographic covariates, or other covariates which, 
for various reasons, the investigator may want to force into 
the model. These covariates can then be used in covariate 
adjustment for the estimation of causal effects either through 
propensity scores [21, 53, 54], or through some other mod-
eling approach. Compared to forward and backward selec-
tion, this approach has the advantage of in fact making use 
of information both on the magnitude of association each 
covariate has with the outcome and with the exposure, and 
effectively discarding those where one of these two is small. 
However, compared with the standard forward and backward 
selection procedures, it has the disadvantage of not sharing 
the theoretical property that the final resulting set of covari-
ates is guaranteed to suffice to control for confounding if the 
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initial total set suffices (provided the presence of associa-
tions is assessed accurately). The “high-dimensional pro-
pensity score” (HDPS) does not share this property with 
the traditional forward and backward selection approaches 
because with the HDPS, the selection is done one covariate 
at a time, independent of the others, rather that conditional 
on the others as with forward and backward selection. Its 
performance in practice may sometimes be reasonable, but 
its theoretical properties in no way guarantees this. Perhaps 
most importantly, however, the HDPS approach, like for-
ward and backward selection, make no adjustment in statisti-
cal inference for the fact that the estimate in the final model 
are obtained “post-selection.”

Fortunately, more principled approaches to statistical 
covariate selection have begun to develop. Some of these 
involve the use of machine learning algorithms to carry 
out covariate selection and to carry out flexible modeling 
between the outcome, exposure, and covariates, and use 
cross-validation and other approaches to handle inference 
post-selection. An approach to covariate selection that is 
flexible and that has been used with some frequency in the 
biomedical sciences is targeted maximum likelihood esti-
mation [55–57] which uses machine learning algorithms to 
model both the exposure and the outcome and cross-valida-
tion techniques to choose among the best models and covari-
ates. While such approaches may hold tremendous promise 
for statistical covariate selection, more work is needed to 
understand the sample sizes and covariate numbers at which 
the approach is feasible and has reasonable small-sample 
properties. While the theoretical properties of these tech-
niques are desirable, they are only necessarily applicable 
asymptotically (i.e., requiring large sample sizes to be guar-
anteed to hold), and their performance in smaller samples is 
sometimes less clear. More practical and simulation-based 
work on determining in what contexts such approaches to 
statistical covariate selection are feasible is needed. Moreo-
ver, even with the most sophisticated statistical covariate 
selection approaches, it still must be the case that the initial 
covariate set itself suffices to control for confounding, which 
of course requires some substantive knowledge involving the 
considerations discussed in the previous sections.

Conclusion

I would thus propose that a practical and theoretically-
informed approach to covariate selection would involve 
using the “disjunctive cause criterion” and thus choosing as 
confounders those variables that are causes of the exposure 
or outcome or both, then, additionally, discarding any varia-
ble known to be an instrumental variable, and including vari-
ables that do not satisfy the criterion but are good proxies 

for unmeasured common causes of the exposure and the 
outcome. This modified approach might be referred to as a 
“modified disjunctive cause criterion” and its use could then 
be accompanied by, depending on available sample size and 
number of covariates, either the use of a regression model 
controlling for all covariates chosen by the modified dis-
junctive cause criteria, or alternatively and perhaps prefer-
ably, when possible, the use of targeted maximum likelihood 
estimation [55–57] or other principled inferential machine 
learning approaches to choose both the relevant covariates, 
and the best flexible model fit. It is hoped that this proposal 
will be of some use in practice in obtaining more reliable 
estimates of causal effects, and will be the basis for further 
discussion and refinement.
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