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Balanced chromosomal rearrangements define distinct entities
in acute myeloid leukemia (AML). Here, we present 13 AML
cases with t(8;16)(p11;p13) with observed low incidence
(13/6124 patients), but more frequent presentation in therapy-
related AML than in de novo AML (7/438 versus 6/5686,
P¼0.00001). Prognosis was poor with median overall survival
of 4.7 months. Cytomorphology was characterized by parallel
positive myeloperoxidase and non-specific esterase staining,
therefore, French–American–British (FAB)-classification was
impossible and origin of the AML with t(8;16) from an early
stem cell with myeloid and monoblastic potential is hypothe-
sized. Erythrophagocytosis was observed in 7/13 cases. Using
gene expression profiling on 407 cases, patients with t(8;16)
were compared to AML FAB subtypes with normal karyotype.
Principal component analyses demonstrated that AML with
t(8;16) were distinct from FAB subtypes M1, M4, M5a/b. When
further compared to AML showing balanced rearrangements,
that is, current WHO categories t(15;17), t(8;21), inv(16) and
t(11q23)/MLL, AML with t(8;16) cases were clustered close to
t(11q23)/MLL sharing commonly expressed genes. Subse-
quently, a pairwise comparison discriminated AML with t(8;16)
from AML with t(11q23)/MLL, thus defining a highly unique
signature for AML with t(8;16). In conclusion, AML with t(8;16)
demonstrates unique cytomorphological, cytogenetic, molecu-
lar and prognostic features and is a specific subtype of AML.
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Introduction

Reciprocal chromosomal rearrangements lead to specific mole-
cular fusion genes and define distinct subclasses with biologic
and prognostic relevance in acute myeloid leukemia (AML).1–3

Recurrent balanced translocations such as t(15;17)/PML-RARA,
t(8;21)/RUNX1-RUNX1T1, inv(16)/CBFB-MYH11 and t(11q23)/
MLL demonstrate a close correlation between cytomorphology,
cytogenetics and molecular biology and also have been
demonstrated in microarray analyses to harbor characteristic
gene expression signatures.4–6 From a functional point of view
these reciprocal rearrangements interfere directly or indirectly
with transcription and lead to a stop of cellular differentiation.7

In 2001, these entities were combined into the first hierarchical

category of the WHO classification of AML.8 Yet, even
combined, these entities only account for a minority of cases in
adult AML (20–25%) and further subclassification of AML with
biological or prognostic relevance would be desirable to achieve
a more detailed classification of this heterogeneous disease.

The reciprocal chromosomal rearrangement t(8;16)(p11;p13)
is an interesting candidate for further investigation, in particular
because the pathways of leukemogenesis in AML with t(8;16)
are not fully understood. This rare translocation with less than
100 cases described so far,9 is characterized by disruption and
fusion of MYST3 (alias MOZ) and CREBBP (alias CBP) genes.
MYST3 is localized on 8p11 and encodes the monocytic
leukemia zinc finger protein, a histone acetyltransferase of the
MYST family that modulates gene transcription through activa-
tion of the AML1 transcription factor complex.10–12 Its fusion
partner CREBBP on chromosome 16p13 encodes the cAMP
response element-binding protein CBP, another histone acetyl-
transferase.10 CREBBP modulates gene transcription by histone
acetyltransferase activity and by binding to several proteins with
central cell-cycle functions.11

Thus far, several different transcript types in AML with t(8;16)
have been identified by reverse transcription (RT)–PCR. How-
ever, the question of the relevant leukemogenic fusion is still
under debate.13 Moreover, both genes involved in the translo-
cation t(8;16) are known to be involved in other rare balanced
rearrangements in AML, all associated with an adverse
prognosis: MYST3 in t(8;19)(p11;q13),14 t(6;8)(q27;p11),
t(8;22)(p11;q13)15 and inv(8)(p11q13);16–18 CREBBP in t(10;16)
(q22;p13)19 or t(11;16)(q23;p13),20 respectively.

Despite the rarity of this AML subtype, it might qualify as a
distinct classifiable entity due to its specific clinical, cytomor-
phologic and genetic profile. We thus intended to further
characterize this rare AML subtype and describe a new cohort of
13 cases of AML with t(8;16) by a multimodal diagnostic
approach. All cases were analyzed by a combination of
cytomorphology, immunophenotyping, cytogenetics and mole-
cular diagnostics. Additionally, whole-genome microarray
analyses were performed and AML with t(8;16) gene expression
patterns were compared to both AML cases with normal
karyotype, including the French–American–British (FAB) sub-
types M1 and M4/M5 with strong myeloperoxidase (MPO) or
non-specific esterase (NSE) expression, and to distinct AML
subtypes with balanced recurrent chromosomal aberrations
according to the WHO classification.

Materials and methods

Study design
This study focused on 13 adult AML patients with
t(8;16)(p11;p13). Details on diagnostic characteristics and
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clinical history are shown in Table 1. All patients gave their
informed consent for participation after having been advised of
the purpose and investigational nature of the study. The study
design adhered to the tenets of the Declaration of Helsinki and
was approved by the institutional review board.

For comparative microarray analyses of this rare subtype we
included in addition 170 patients with other specific FAB
subtypes, such as FAB M1 (n¼ 70), FAB M4 (n¼ 69), FAB M5a
(n¼ 10) and FAB M5b (n¼ 21), which all showed a normal
karyotype. This cohort was further completed by inclusion of
230 patients with the following balanced chromosomal
translocations according to the first categorical hierarchy of
the WHO classification: t(15;17)/PML-RARA (n¼ 58), t(8;21)/
RUNX1-RUNX1T1 (n¼ 56), inv(16)/CBFB-MYH11 (n¼ 56) and
t(11q23)/MLL-rearrangements (n¼ 60).

Diagnosis was performed from bone marrow samples in all
patients between 1999 and 2008 by an individual combination
of cytomorphology, cytogenetics, fluorescence in situ hybridi-
zation (FISH), immunophenotyping and molecular genetics as
published elsewhere.21 Cytomorphologic classification followed
the FAB classification of AML.22,23 AML with t(8;16) bone
marrow smears were reviewed by two independent cytologists
(TH and HL).

At the time of diagnosis, mononuclear cells from the bone
marrow aspirate were purified by Ficoll density centrifugation
and 5� 106 cells were lysed (RLT lysis buffer; Qiagen, Hilden,
Germany). For subsequent molecular analyses these stabilized
lysates were frozen and stored at �80 1C. RT–PCR was
performed as described by Borrow et al.24 and by Schmidt
et al.25 Samples that failed to amplify a MYST3-CREBBP product
where further screened according to primers as published by
Murati et al.26 The microarray sample preparation assay was
performed as previously reported.4,5,27

Microarray data analysis
Gene expression data were processed according to the
manufacturer’s recommendations. After quality control, HG-
U133A/B and HG-U133 Plus 2.0 data series were normalized
separately using the robust multiarray average normalization
algorithm as implemented in the R-package affy version
1.18.0.28 To assess differential gene expression an empirical
Bayes approach as proposed by Smyth was used.29 This method
borrows information from the ensemble of genes which can
assist in inference about each gene individually. The genewise
tests are based on moderated t-statistics in which posterior

standard deviations are used in place of ordinary standard
deviations. The process yields shrinkage of the genewise sample
variances toward a common value, resulting in more stable
inference compared to ordinary t-tests when the number of
arrays is small. The resulting P values were adjusted for control
of the false discovery rate according to Benjamini and
Hochberg’s method.30 Analyses were performed in R with the
limma package version 2.14.1.

For binary classification of AML with t(8;16) and non-t(8;16)
specimens support vector machines (SVMs) were used (R-package
e1071 version 1.5-18; default parameters; linear kernel).31 As the
comparison of expression values between training (HG-U133A/B)
and test data (HG-U133 Plus 2.0) revealed slight differences in
probe set wise means and standard deviations within the two
cohorts, each probe set in each dataset was centered and scaled to
unit standard deviation before the SVM was trained and tested. Of
note, similar effects have been observed by Metzeler et al.32 and
are probably due to different microarray platforms and separate
normalization.

To visualize similarity of gene expression patterns, we applied
hierarchical clustering and principal component analyses.
Transformed gene expression data were analyzed using the
GeneMaths XT Version 2.1 (Applied Maths, St-Martens-Latem,
Belgium) and Partek Genomics Suite Version 6.4 (Partek Inc.,
St Louis, MO, USA). Biological networks were generated using
Ingenuity Pathways Analysis Version 6.5 (Ingenuity Systems,
Redwood City, CA, USA), a web-based application that
generates networks by use of differentially expressed genes
from expression array data analyses.33

Results

Incidence, history and prognosis
We here present a cohort of AML cases with t(8;16)(p11;p13).
This translocation was rare with only 13 (0.2%) of 6124 cases of
AML diagnosed from our overall cohort of patients over recent
years (Table 1). The distribution of gender was 9 women and 4
men. AML with t(8;16) was found more frequently in therapy-
related AML (t-AML) than in de novo AML (7/438 t-AML and
6/5686 de novo; P¼ 0.00001). In the t-AML group 4/7 patients
had a history of breast cancer. One case each was following
T-cell non-Hodgkin’s lymphoma or B-cell non-Hodgkin’s
lymphoma, and one case was following chronic myelomono-
cytic leukemia. As shown in Figure 1, prognosis of AML with

Table 1 Characteristics of the 13 patients of AML with t(8;16)

No. Gender Age Diagnosis (FAB) History Pox (%) Est (%) Erythrophagocytosis Blast (%)

1 Female 40 AML M5a de novo AML 90 80 F N.A.
2 Female 63 AML M4/M5 de novo AML 83 100 1/500 N.A.
3 Male 58 t-AML M4 t-AML (following T-NHL) 100 100 5/500 N.A.
4 Male 77 AML M4/M5a de novo AML 72 86 1/300 90
5 Female 52 t-AML M5a/M4a t-AML (following breast cancer) 100 89 F 99
6 Male 64 t-AML M4 t-AML (following CMML) 30 84 2/100 90
7 Female 39 t-AML M5a t-AML (following breast cancer) 84 95 F 90
8 Male 31 AML M5a de novo AML N.A. 95 N.A. 95
9 Female 56 t-AML M0 t-AML (following breast cancer) 85 F Yes N.A.

10 Female 63 AML M5a de novo AML 95 90 F 76
11 Female 83 t-AML M4 t-AML (following B-NHL) 85 65 1/100 68.5
12 Female 53 t-AML M4 t-AML (following breast cancer) 80 40 1/200 76.5
13 Female 49 AML M4 de novo AML 95 60 F 30

Abbreviations: AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; Est, esterase activity; FAB, French–American–British; Pox,
peroxidase activity; N.A., not available; t-AML, therapy-related AML; T-NHL, T-cell non-Hodgkin’s lymphoma.
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t(8;16) was poor with median overall survival of 4.7 months.
Five patients deceased within the first month after diagnosis.

Cytomorphology, cytogenetics, RT–PCR and
immunophenotype
All cases were evaluated by May–Gruenwald–Giemsa staining
on bone marrow and blood smears. Cytomorphology showed
blasts in X30% of all cells without differentiation (range
30–99%; median: 90%). As shown in Table 1, in all 13 cases
the positivity for MPO on bone marrow smears was X30%
(range 30–100%; median: 85%). Intriguingly, in parallel also
X40% (range 40–100%; median: 88%) of blast cells stained
strongly positive for NSE, suggesting that AML with t(8;16) arise
from a very early stem cell with both myeloid and monoblastic
differentiation potential. Therefore, AML with t(8;16) cases can
not be classified according to standard FAB categories.

In many cases suspicion of the t(8;16) arises already from
cytomorphology, because the blasts are characterized by the
striking phenomenon of erythrophagocytosis.34–36 Also in our
cohort erythrophagocytosis was frequently present (7/13 cases).
Figure 2 is illustrating the cytomorphology of a typical AML with
t(8;16) sample.

Chromosome banding analyses were performed in all cases
and showed an isolated t(8;16)(p11;p13) in 6/13 cases
(Supplementary Table 1); 7/13 patients demonstrated additional
abnormalities, with 4 cases showing single additional aberra-
tions and 3 cases having two or more additional aberrations,
respectively. Molecular analyses detected the MYST3-CREBBP
fusion transcript in all cases tested (12/12).

Multiparameter flow cytometric analysis of the immuno-
phenotypes of leukemic cells was performed in seven cases. As
has been previously reported,9 all cases examined in our series
expressed the myeloid markers MPO, CD33, CD13, CD65 and
CD15, but lacked the expression of the progenitor cell markers
CD34, CD117 and CD133 (Supplementary Table 2). Further-
more, these cases displayed an expression pattern of the
monocytic antigens CD14, CD64, CD11b as well as a
coexpression of CD56 and CD4. Differing from most other

AML cases, the present series featured a strong side-scatter
signal in all cases (Supplementary Figure 1).

Exploratory gene expression microarray analysis
Gene expression signatures were analyzed in seven cases using
Affymetrix microarrays and two different kinds of analyses were
performed. In both analyses we separated between a training
cohort and an independent test cohort (Supplementary Tables 3,
4). Differentially expressed genes were identified in the cohort
analyzed with HG-U133A/B microarrays. The signatures then
were validated in the cohort analyzed with HG-U133 Plus 2.0
microarrays.

First, we compared the gene expression patterns of seven
cases of AML with t(8;16) to AML cases with normal karyotype
representing the AML FAB subtypes M1 with strong MPO
expression and M4/M5 with strong NSE expression. As shown in
Figure 3a, using Affymetrix HG-U133A/B microarrays 4 cases of
AML with t(8;16) were compared to AML FAB subtype M1
(n¼ 46) and 66 patients with various monocytic subtypes (M4:
n¼ 41; M5a: n¼ 9; M5b: n¼ 16). The principal component
analysis (PCA) showed a continuum of cases for the defined
FAB subtypes whereas AML with t(8;16) clustered separately,
underlining their distinctiveness, as compared to classical FAB
characteristics. Still, gene expression patterns seemed more
strongly influenced by monocytic than by myeloid character-
istics as the cluster of cases of AML with t(8;16) was found in
close proximity to the FAB M5a/M5b grouping. This result was
confirmed when an independent cohort of samples was
analyzed. As given in Figure 3b, the discovered signature from
HG-U133A/B microarrays was validated using testing data
obtained from an independent cohort of patients analyzed with
HG-U133 Plus 2.0 microarrays. Again, a similar clustering was
observed for an independent series of 3 cases of AML with
t(8;16) and the AML FAB subtypes M1 (n¼ 24) and 34 patients
with various monocytic subtypes (M4: n¼ 28; M5a/b: n¼ 6).

Secondly, AML with t(8;16) cases were compared to the four
reciprocal rearrangements of the first hierarchy of the WHO
classification of AML: 43 cases of t(15;17)/PML-RARA, 40 cases
of t(8;21)/RUNX1-RUNX1T1, 49 cases of inv(16)/CBFB-MYH11
and 50 cases of t(11q23)/MLL gene rearrangements (Figure 3c).
In this analysis, using HG-U133A/B gene expression patterns,
AML with t(8;16) samples were repeatedly grouped in the
vicinity of the t(11q23)/MLL cases and partly intercalated with
the t(11q23)/MLL group. Also, this dominant signature was
confirmed when an independent cohort of samples was
analyzed. As given in Figure 3d, the discovered signature from
HG-U133A/B microarrays was validated using data obtained
from an independent cohort of patients analyzed with HG-U133
Plus 2.0 microarrays. A similar clustering was observed for an
independent series of 3 cases of AML with t(8;16), repeatedly
intercalating with the group of t(11q23)/MLL (n¼ 10), but being
clearly distinct from other AML subtypes with balanced
chromosomal aberrations (inv(16), n¼ 7; t(15;17), n¼ 15;
t(8;21), n¼ 16).

However, in a subsequent direct pairwise comparison AML
with t(8;16) cases could also be clearly discriminated from
t(11q23)/MLL by a unique signature (Figure 3e). This was also
seen for the independent testing series from the HG-U133 Plus
2.0 cohort (Figure 3f). The genes differentially expressed
included candidates such as SGSM, a small G protein-signaling
modulator, or the proposed tumor suppressor HINT1, a histidine
triad nucleotide-binding protein, with lower expression in AML
with t(8;16). The histone methyltransferase SETD8, SETD1B,
another component of a histone methyltransferase complex,

O
ve

ra
ll 

S
ur

vi
va

l (
%

)

Months

100

90

80

70

60

50

40

30

20

10

0
0 6 12 18 24 30

Figure 1 Survival analysis of acute myeloid leukemia (AML) with
t(8;16) cases. Data is shown for 13 patients of AML with t(8;16). Tick
marks represent patients whose data were censored at the last time
they were known to be alive.
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RAS oncogene family member RAB33A, the oncogene PIM1
kinase, or GPR124, a G protein-coupled receptor, were
observed to be higher expressed in AML with t(8;16),
respectively, as compared to AML with t(11q23)/MLL. An
additional hierarchical clustering heatmap is given in the
Supplementary Material (Supplementary Figure 2). A full list of
differentially expressed genes for each comparison is also
available online.

In summary, in direct comparison to other FAB subtypes or
categorized WHO entities with chromosomal aberrations,
dominant and unique gene expression patterns were confirmed
for AML with t(8;16), underlining the molecular distinctiveness
of this rare AML entity.

Similarity of AML with t(8;16) and AML with t(11q23)/
MLL
In the next analysis, the similarity of AML with t(8;16) and AML
with t(11q23)/MLL was further investigated. As shown in the
hierarchical clustering analysis in Figure 4, both types of AML
shared common blocks of genes with similar expression patterns
as compared to other AML subtypes. An enlarged section of
dendrogram no. 1 highlights three exemplary series of genes that
were observed to be consistently lower expressed and included
candidates such as CCND2, CBX2, CD99, MLLT11, NCOA7,
RRAGD, PDGFC and SMYD2 (Figure 5).

As enlarged from the common groups derived from dendro-
gram no. 2, genes with higher expression in both AML with
t(8;16) and AML with t(11q23)/MLL included markers such as
HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9,
HOXA10, PBX3, MEIS1 and HNMT (Figure 5). In summary, a
similar deregulated expression of HOXA cluster member genes
was observed leading to the hypothesis of shared pathways for
these two types of AML with poor prognosis.

Molecular network analysis
Genes with a specific expression profile in the AML cases with
t(8;16) were further examined in pathway analyses. First, t(8;16)
specific genes were identified by comparing t(8;16) cases in
one-versus-all comparisons versus other FAB subtypes and also
versus other WHO entities. This resulted in a list of 177
differentially expressed probe sets with specific expression for
AML with t(8;16) for the HG-U133A/B cohort and 161
differentially expressed probe sets with specific expression for
AML with t(8;16) for the HG-U133 Plus 2.0 cohort. Secondly,
we compared the overlap of the gene lists from the two different
chip types and this resulted in a common list of 55 differentially
expressed probe sets with highly specific overexpression in AML
cases with t(8;16) (Supplementary Table 5). A detailed annota-
tion of the three gene lists is available online.

The 55 t(8;16) specific probe sets were then analyzed with
Ingenuity’s pathway analysis application. In total, 47 probe sets
were successfully mapped to annotated genes in the pathway
application. Figure 6 shows the two top-scoring networks with 9
and 10 of the AML with t(8;16) specific genes included,
respectively.

In network 1, nine genes from the AML with t(8;16) candidate
list were mapped around MYC and TP53, and included the
candidates ALDH4A1, BMP8B, CLPB, HNF4G, PERP, PHF10,
POU4F2, SERPINI2 and TRHDE. TP53 is well known to play a
critical role as gatekeeper in cell division and apoptosis. The
second network, which centered on AKT and RAS, controls cell
response to mitogens. In this network, 10 genes from the AML
with t(8;16) candidate list included AGT, CAMSAP1L1,
CHCHD7, HOXA9, ITSN1, PRL, PRLR, RYR2, SCGB3A1 and
SMAD6. Both networks are implicated in oncogenesis and the
observed disregulation in AML with t(8;16) as compared to other
AML subtypes may explain some of the unique cytomorpholo-
gical, cytogenetic, molecular and prognostic features of this
group. Overall, in the AML with t(8;16) signature 7 genes out of
the 55 probe sets were associated with transcriptional regulation.

Classification analysis
We next assessed the predictive strength of the gene expression
signature for AML with t(8;16) by using a classification
algorithm. First, SVMs were used to predict AML with t(8;16)
in the context of other AML FAB subtypes within the
HG-U133A/B dataset. As observed by leave-one-out cross-
validation, all samples were correctly classified. Secondly,
another SVM algorithm was trained using the gene expression
signature as described above, that is, 177 AML with t(8;16)
specific probe sets (Supplementary Table 5), restricted to
training data from the HG-U133A/B microarray cohort. This
SVM was subsequently applied to classify the AML with t(8;16)
and FAB samples from the independent HG-U133 Plus 2.0 test
dataset. Again, correct predictions were observed for the AML
with t(8;16) specimens in the testing cohort. This successful
classification was observed not only for both FAB-type but also
for the corresponding WHO-type signatures. Therefore, a
correct classification of all cases of AML with t(8;16) was
observed both across the different patient cohorts and the two
available microarray designs in this study.

Discussion

In AML, distinct subtypes can clearly be specified by
applying cytomorphology, cytogenetics and molecular genetic
methods. Particularly, this is the case for AML M4eo with

Figure 2 Cytomorphology of a typical case of acute myeloid leukemia (AML) with t(8;16). Bone marrow smears are displayed according to
(a) May–Gruenwald–Giemsa (MGG) staining. (b) Myeloperoxidase (MPO) staining. (c) Non-specific esterase (NSE) staining.
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inv(16)/CBFB-MYH11, acute promyelocytic leukemia (APL)
with t(15;17)/PML-RARA, as well as AML with t(8;21)/RUNX1-
RUNX1T1 which also show specific patterns with respect to the

immunophenotype, for example, the negativity for HLA-DR
in APL, and molecular gene expression.5,37–40 This correlation
is less striking for AML with 11q23/MLL rearrangements.

t(15;17)

inv(16)

t(11q23)

t(8;21)

t(8;16)

FAB M5b

t(8;16)FAB M1

FAB M4

FAB M5a FAB M1

FAB M4

FAB M5a/b

t(8;16)

t(15;17)

inv(16)

t(11q23)

t(8;21)

t(8;16)

t(11q23)t(8;16) t(11q23)t(8;16)

Figure 3 Principal Component Analysis (PCA). The leukemia samples are plotted in a three-dimensional space using the three principal
components (PC) capturing most of the variance in the original dataset. Each patient sample is represented by a single color-coded sphere.
(a) French–American–British (FAB)-subtype analysis using the discovery cohort from HG-U133A/B arrays. The genes used for analysis were
selected from five one-versus-all (OVA) comparisons for FAB M1, M4, M5a, M5b and acute myeloid leukemia (AML) with t(8;16), respectively.
From each pairwise analysis the top 300 differentially expressed genes were combined, resulting in 1351 unique probe sets. (b) FAB-type
analysis using the validation cohort (HG-U133 Plus 2.0 microarrays). The analysis is based on the 1351 probe sets from the discovery cohort.
(c) WHO-subtype analysis using the discovery cohort from HG-U133A/B arrays. The genes used for analysis were selected from five OVA
comparisons for t(11q23)/MLL, inv(16), t(15;17), t(8;21), and AML with t(8;16), respectively. From each pairwise analysis the top 300 differentially
expressed genes were combined, resulting in 1449 unique probe sets. (d) WHO subtype analysis using the validation cohort (HG-U133 Plus 2.0
microarrays). The analysis is based on the 1449 probe sets from the discovery cohort. (e) Pairwise analysis between t(11q23)/MLL and AML with
t(8;16) using the discovery cohort from HG-U133A/B arrays and selecting the top 300 differentially expressed genes. (f) Pairwise analysis between
t(11q23)/MLL and AML with t(8;16) using the validation cohort (HG-U133 Plus 2.0 microarrays). The analysis is based on the 300 probe sets from
the discovery cohort. For all analyses corresponding supporting material is available online.
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However, this subtype is closely associated to monocytic
differentiation in cytomorphology, is characterized by expres-
sion of 7.1 antigen in multiparameter flow cytometry, and also
shows unique gene expression signatures.41,42 Thus far, these
four entities are combined into the first hierarchical step in the
WHO classification as so-called ‘AML with recurrent balanced
translocations’.8

This hierarchy of the WHO classification of AML might be
amended by further addition of other reciprocal translocations,
such as the rare t(8;16)(p11;p13), if unique clinical, morpholo-
gic and genetic features were established. We thus focused on a
detailed characterization of a novel cohort with t(8;16)(p11;p13)
by a multimodal diagnostic approach, which was supported by
microarray-based gene expression profiling. We were able to
add 13 new cases to the so far less than 100 reported cases in
the Mitelman database (http://cgap.nci.nih.gov/Chromosomes/
Mitelman).9 Also in our series of AML, the t(8;16) was observed
to be very rare, that is, 0.2% of all cases in this study, compared
to 0.4% according to Mitelman et al.,43 but its incidence in
therapy-related AML was confirmed to be significantly higher,
that is, 1.6% in this study. This is in line with data that described
for many therapy-induced cases of the t(8;16) subtype the
association to previous therapy with alkylating drugs in
combination with topoisomerase-II-inhibitors, for example,
anthracyclines or epipodophyllotoxins. The observed interval
from the primary malignancy to therapy-induced AML with
t(8;16) is short without preleukemic phase in accordance with

therapy induction of AML with other reciprocal transloca-
tions.44,45 With respect to the gender distribution, female
patients represented 69% in our series (9/13 patients) which is
supporting data from a previous study where 67% of cases were
women.9

We further could confirm the poor prognosis reported
previously,34,35,44–46 as patients from our series demonstrated
a median survival of 4.7 months only. For some part this
negative outcome might be explained by the high incidence of
t-AML cases in cases of t(8;16) with 54% in our cohort.47

However, outcome was even inferior than in AML with
t(11q23)/MLL rearrangements, which is also associated with
t-AML, but shows a median survival of 9 months.48 This
indicates a high-risk grading of patients with t(8;16) from a
therapeutic point of view. One of the few patients with longer
follow-up within our cohort had received allogeneic transplan-
tation, which might improve outcome in single cases. However,
the short survival in many reported cases may not even allow
the preparation for this treatment option.

The above-mentioned association of the t(8;16) and the
t(11q23)/MLL AML subtypes to previous chemo/radiotherapy
and to an inferior prognosis suggests also parallels in the
leukemogenic pathways. Intriguingly, cytomorphologic findings
support the hypothesis of such vicinity: due to the morphologic
appearance of blasts and due to the strong NSE staining AML
with t(8;16) is mostly diagnosed as myelomonocytic or even
monocytic leukemia mimicking FAB M4 or M5a. The latter is

AML with t(8;16)

AML with inv(16) AML with t(15;17) AML with t(8;21)

AML with t(11q23)/MLL

1

2

Figure 4 Hierarchical clustering analysis. In the hierarchical clustering analysis 237 acute myeloid leukemia (AML) cases are displayed, that is,
visualizing both the HG-U133A/B and HG-U133 Plus 2.0 cohorts. The genes used for the cluster are based on the discovery cohort only (HG-U133A/
B) and were selected from five one-versus-all comparison for each of the AML subtypes AML with t(8;16), t(11q23)/MLL, inv(16), t(15;17) and t(8;21).
From each pairwise analysis the top 300 differentially expressed genes were combined, resulting in 1449 unique probe sets (given in rows). The
similarity was computed by Euclidean distance, and then Ward’s method was used to cluster the gene expression profiles based on these measures.
The normalized expression value for each gene is coded by color (standard deviation from mean). Red cells indicate high expression and green cells
indicate low expression. The coloring of the leukemia groups is identical to Figure 3. Supporting material is available online.
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highly associated to t(11q23)/MLL rearrangements in AML.49,50

However, the t(8;16) shows positive MPO staining in parallel to
positive NSE in nearly all cases,36 which separates it from all
other AML including the monocytic subtypes. This combination
of features of FAB M1, M4 and M5a subtypes in AML with

t(8;16) renders classification according to FAB or WHO criteria
impossible. Secondly, it suggests that the blasts in t(8;16) might
origin in a very immature stem cell bearing monocytic as well as
myelocytic characteristics which in part might explain the
frequent resistance to standard chemotherapy regimens.
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Figure 5 Shared gene expression signatures between acute myeloid leukemia (AML) with t(8;16) and AML with t(11q23)/MLL. Three sections
from dendrogram 1 from Figure 4 are enlarged and visualized genes with a lower expression in both AML subtypes as compared to AML with
t(8;21), AML with t(15;17) or AML with inv(16), respectively (green cells). Another two sections from dendrogram 2 focused on genes with
consistent higher expression in both AML subtypes (red cells). Supporting material is available online.
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We also add new data to the finding of MOZ involvement in
AML and erythrophagocytosis. In our cohort, erythrophago-
cytosis of the blasts was observed in 7/13 cases. Interestingly,
erythrophagocytosis so far not only was observed in AML with
t(8;16), but also in the rare inversion inv(8)(p11q13), which fuses
the MOZ and NCOA2 (nuclear receptor coactivator 2, alias
TIF2) genes.16 Thus, this phenomenon seems to be a frequent
event for MOZ involvement in AML.

With respect to the transcriptional program active in AML
with t(8;16) we observed striking similarities of t(8;16) cases and
AML with t(11q23)/MLL rearrangements. Hierarchical clustering
and PCA revealed a common signature of the HOX cluster genes
overexpressed in both subtypes. This is in line with recent data
from Camos et al.51 and Murati et al.,52 who detected
overexpression of HOXA9, HOXA10 and their cofactor MEIS1
in their series of t(8;16). We also confirm the overexpression of
PRL, CHD3, CPEB2, NR2F6 and RET genes in AML with t(8;16)
and decreased expression of the CCND2 and HINT1 genes.51

Additionally, we were able to clearly discriminate cases with
t(8;16) from cases with t(11q23)/MLL rearrangements by a direct
pairwise comparison underlining that indeed a unique t(8;16)
specific signature exists and can be defined by gene expression
profiling.

Overall, dominant functions for genes with higher expression
in AML with t(8;16) were observed to be involved in DNA
binding processes and transcription factor activity (supporting
online information for gene lists N177 and N161, respectively).

Amongst those, CHD3 (chromodomain helicase DNA-bind-
ing protein 3, alias Mi-2a), in particular, seems to be an
interesting target gene for further research. CHD3 proteins have
been reported to be ATP-dependent chromatin remodelers that
contribute to repression of developmentally regulated genes in
both animal and plant systems.53 Recently, in a two-hybrid
screening CHD3 was identified as an interaction partner for
human c-Myb and gain of the MYB locus was found as recurrent
abnormality in AML with t(8;16) cases using array comparative
genome hybridization technology.54 Thus, one can speculate
that aberrant expression of CHD3 would perturb the MYB
pathway and therefore may contribute to a maturation block in
monocyte-macrophage differentiation as reported previously.55

Using a classification analysis we were able to demonstrate
that AML with t(8;16) harbors underlying gene expression
signatures that are robust enough to also serve as a potential
classifier to predict new cases of AML with t(8;16). The
successful classification in all cases of AML with t(8;16) was
not only observed for both FAB-type and WHO-type signatures,
but also correctly classified the cases across the different patient
cohorts and microarray designs.

In conclusion, our results suggest that in all aspects as
discussed above AML with t(8;16) is clearly separated from the
so-called favorable translocations t(8;21), t(15;17) and inv(16).
The latter correlate with a favorable prognosis and occur much
more often in de novo than in t-AML. Their morphologic
featuresFAML FAB M1 and M2 in the t(8;21), APL in t(15;17)
and AML FAB M4eo in inv(16)Fshow no parallels to AML with
t(8;16). Moreover, we were able to demonstrate that AML cases
with t(8;16) are characterized by distinct features with respect to
cytomorphology, cytogenetics, RT–PCR and gene expression
patterns, as well as by their association to t-AML and very poor
prognosis.
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